BHI Colloquium


Monday, November 22, 2021, 11:00am to 12:00pm

Stefan Czimek (Mathematics) - Brown University

Title: The characteristic gluing problem of general relativity

Abstract: In this talk we introduce and solve the characteristic gluing problem for the Einstein vacuum equations. We show that obstructions to characteristic gluing come from an infinite-dimensional space of conservation laws along null hypersurfaces for the linearized equations at Minkowski. We prove that this space splits into an infinite-dimensional space of gauge-dependent charges and a 10-dimensional space of gauge-invariant charges. We identify the 10 gauge-invariant charges to be related to the energy, linear momentum, angular momentum and center-of-mass of the spacetime. Based on this identification, we explain how to characteristically glue a given spacetime to a suitably chosen Kerr spacetime. As corollary we get an alternative proof of the Corvino-Schoen spacelike gluing to Kerr. Moreover, we apply our characteristic gluing method to localise characteristic initial data along null hypersurfaces. In particular, this yields a new proof of the Carlotto-Schoen spacelike localization where our method yields no loss of decay, thus resolving an open problem. We also outline further applications. This is joint work with S. Aretakis (Toronto) and I. Rodnianski (Princeton).

Bio: Stefan Czimek is a mathematician working in general relativity, and currently at the ICERM @ Brown University as an Institute Postdoctoral Fellow. In his research he uses tools from analysis, PDE theory and differential geometry to study fundamental questions of general relativity.