Singularity Resolution Through Dynamical Quantum Gravity

Sean Gryb with Karim Thébault

First Annual BHI Conference on Black Holes
Black Hole Initiative
Harvard University
09 May 2017
Singularity resolution through dynamical quantum gravity

- My take home message of yesterday:
 GR black holes probably exist!
- Singularities are ubiquitous in General Relativity (e.g., singularity theorems).
- Hope: quantum effects could ease or remove (some/all) singularities.
- Uncertainty principle could ‘smooth out’ pathologies.
- Dashed hope: naive ‘timeless’ (Wheeler–DeWitt) quantization fails to resolve even simple cosmological singularities.

What goes wrong?

⇒ We believe it is the treatment of time
Singularity resolution through dynamical quantum gravity

- I will give a quantization of a simple cosmological model that:
 - has genuine evolution, and
 - resolves the singularity that persists in the timeless approach.
- In addition, the model exhibits novel phenomenology including:
 - an inflationary epoch,
 - a macro parameter encoding deep quantum physics, and
 - a new platform for condensed matter quantum simulation of the early universe.
- Could be applied to more general kinds of singularities.
The classical model

A simple FRWL cosmology

Homogeneous and isotropic mini-superspace model with massless scalar field and vanishing spatial curvature.

Hamiltonian:

\[H = N \left[-\frac{\kappa}{12V_0a}\pi_a^2 + \frac{1}{2V_0a^3}\pi_\phi^2 + \frac{V_0a^3}{\kappa}\Lambda \right] \]

Variables

- \(a \) - scale factor
- \(\phi \) - scalar field

Parameters

- \(\Lambda \) - cosmological constant
- \(\pi_\phi \) - momentum of scalar field

\((V_0 \text{ - fudicial volume; } \kappa \text{ - Newton constant})\)
The Hamiltonian can be written as

$$ H = N \left(g^{ab} p_a p_b - \frac{\Lambda}{2} \right) $$

(1)

g^{ab} ⇒ inverse Minkowski metric on configuration space C!

Solutions ⇒ geodesics on (C, g)

Restriction

Geometrically, $a > 0$ puts us in Rindler spacetime.

Boundary ⇒ geodesic incompleteness on (C, g) (classical singularity and quantum complications)
Boost symmetry suggests Rindler coordinates: $v \propto a^3$, $\varphi \propto \phi$

$$v = v_0 + \sqrt{t - 1}$$
$$\varphi = \varphi_\infty + \text{arctanh} \left(t^{-1} \right)$$

Parameters
- v_0 - initial time
- φ_∞ - asymptotic φ
- Λ - total energy
- π_φ - conserved p

Symmetries
- Time translations
- Boost invariance
- Time units
- Space units

Symmetries \Rightarrow no physically relevant parameters!
Quantization Preliminaries

Hamilton–Jacobi equation:

\[\mathcal{H} \left(q, \frac{\partial S}{\partial p} \right) = \frac{\Lambda}{2} \]

Quantization ambiguity

\[\hat{\mathcal{H}} \psi = \frac{\Lambda}{2} \psi \quad \text{or} \quad \hat{\mathcal{H}} \psi = i \frac{\partial \psi}{\partial \tau} \]

⇒ Timeless (Wheeler–DeWitt) vs genuine evolution (unimodular gravity-like)

Relational quantization:

- Take approach with genuine evolution.
- \(\tau \) - unobservable parameter ordering successive states.
Wheeler–DeWitt equation is timeless.

⇒ deparametrize wrt internal time. (e.g., φ)

Problem (example)

$<v>$ problematic when $\varphi \to \infty$ (takes definite values)

Relation quantization $\Rightarrow \hat{\varphi}$ does not take definite values.

$<v>, <\varphi>$ protected by uncertainty relations!

We will use genuine evolution:

$$\hat{\mathcal{H}} \psi = \Box \psi = i \frac{\partial \psi}{\partial \tau}.$$
Unitarity

Boundary of $\mathcal{C} \Rightarrow \hat{\mathcal{H}}$ not essentially self-adjoint!

$$\langle \Phi, \hat{\mathcal{H}} \Psi \rangle = \langle \hat{\mathcal{H}} \Phi, \Psi \rangle + \text{boundary}$$

(Boundary term \Rightarrow quantum trace of classical singularity.)

Self-adjoint Extensions

- Guaranteed by von Neumann. ($\hat{\mathcal{H}}$ - symmetric and real)
- Trick: the equation (boundary $= 0$) is conformally invariant.
- Use eigenfunctions on conformal completion $\tilde{g} = \nu^2 g$ (maps $\mathbb{R}^+ \times \mathbb{R} \rightarrow \mathbb{R}^2$) to anchor solutions in Minkowski.
- Put phase between solutions to remove Λ-(scale) dependence.

\Rightarrow must introduce reference scale Λ_{ref}.
‘Bound’ states ($\Lambda < 0$)

Spectrum of Klein–Gordon operator on Rindler for $\Lambda < 0$:

- AdS-like states exit.
- Spectrum is discrete but unbounded: (k - momentum of φ)

$$\Lambda_n = \Lambda_{\text{ref}} e^{2\pi n/k} \quad (n \in \mathbb{Z})$$

- Conformal tower of states with accumulation point at $\Lambda = 0$.
- Analogues of atomic systems: *Efimov effect*.
- Eigenstates behave like $\psi_{\Lambda} \sim e^{-\nu}$.

\Rightarrow no late-time semi-classical limit!
dS-like states exist and persist to late-time, semi-classical limit.

Continuous spectrum given by phase-shifted Bessel functions:

\[\psi_\Lambda \sim J_{ik}(\sqrt{\Lambda}v) + \tan \theta I_{ik}(\sqrt{\Lambda}v) \]

\[\theta \propto k \log \Lambda/\Lambda_{\text{ref}} \quad (U(1) \text{ s.a. ext. parameter}). \]

Gaussian states lead to semi-classical physics.

New dimensionful parameter \(\Lambda_{\text{ref}} \) gives meaning to size of quantum effects (\(\hbar \)).

Self-adjoint extension parameter: phase between in- and out-state.
Analogue model

- System is mathematically equivalent to N-particle system with $1/r^2$ potential (in a particular regime).
- Regime in question is a good effective model for some 3-body atomic systems.
- Known as *Efimov effect* \Rightarrow vast literature.
- Unbound states can be scattered off bound states.
- Self-adjoint extension parameter gives scattering length via phase shift, θ.
- θ is macro parameter encoding micro-physics.

How seriously can we take the analogue model or simulator of the early universe?
Bounce Solution
Expectation values

\[<v> \] has a min when \(v_{\text{class}} = 0 \).

\[<\phi> \] is finite when \(\phi_{\text{class}} \to \infty \).

Singularity resolved and classical limit recovered!
New parameter, \(\Lambda_{\text{ref}} \), gives meaning to \(\hbar \) and relative size of quantum effects.
Simple example in $\hbar \sim 1$ regime.

Note inflationary period where $\frac{\partial \langle \phi \rangle}{\partial \langle v \rangle} \approx 0$.
We have given a quantization of a simple FRLW cosmology that

- Resolves singularity (improvement over WDW).
- Recovers semi-classical dS limit.
- Suggest novel phenomenology in quantum regime.
- Provides unique macro-parameter, Λ_{ref}, encoding micro-physics.
- New platform for condensed matter quantum simulation of the early universe.
Generalizations

- Bianchi I: ν wavefunction is identical.
- Bianchi IX: Bessel functions \Rightarrow non-analytic with same asymptotic properties.
- BKL \Rightarrow more general mechanism for singularity resolution via quantum effects.
- Conformal anomaly and holographic renormalization.
- Absorption/Decay: AdS-‘bound’ state \Rightarrow dS-‘emission’ (need non-linear corrections).
- Self-adjoint extension parameter \Rightarrow UV-completion required (conformal?).